TECHNICAL REFERENCE

Have a Technical question? Don't worry. Here in the c3controls Technical Reference section, you'll find all the information you need to help you make the right decision for your particular application. From enclosure ratings to hazardous location classifications to pilot duty rating codes, we've got it covered — all in a format that is easy to understand.

Section 29

Enclosure Ratings & Hazardous Location Classifications	2
Pilot Device Colors, Meanings and Functions	5
Pilot Duty Rating Codes	8
IEC Utilization Categories	9
Motor Full-Load Currents	10
Formulas & Conversion Factors	11
Electrical Symbols	12

EN	ICLOSURE TYPES	NON-HAZARDOUS	5 LOCATION
Enclosure Rating	NEMA National Electrical Manufacturers Association (NEMA Standard 250) and Electrical and Electronic Mfg. Association of Canada (EEMAC)	Underwriters Laboratories Inc. (UL50 and UL508)	Canadian Standards Association (Standard C22.2 No. 94)
Туре 1	Enclosures are intended for indoor use primarily to provide a degree of protection against contact with the enclosed equipment or locations where unusual service conditions do not exist.	Indoor use primarily to provide protection against contact with the enclosed equipment and against a limited amount of falling dust.	General purpose enclosure. Protects against accidental contact with live parts.
Type 3	Enclosures are intended for outdoor use primarily to provide a degree of protection against windblown dust, rain, and sleet; undamaged by the formation of ice on the enclosure.	Outdoor use to provide a degree of protection against windblown dust and windblown rain; undamaged by the formation of ice on the enclosure.	Indoor or outdoor use; provides a degree of protection against rain, snow, and windblown dust; undamaged by the external formation of ice on the enclosure.
Type 3R*	Enclosures are intended for outdoor use primarily to provide a degree of protection against falling rain and sleet; undamaged by the formation of ice on the enclosure.	Outdoor use to provide a degree of protection against falling rain; undamaged by the formation of ice on the enclosure.	Indoor or outdoor use; provides a degree of protection against rain and snow; undamaged by the external formation of ice on the enclosure
Type 4	Enclosures are intended for indoor or outdoor use primarily to provide a degree of protection against windblown dust and rain, splashing water, and hose directed water; undamaged by the formation of ice on the enclosure.	Either indoor or outdoor use to provide a degree of protection against falling rain, splashing water, and hose-directed water; undamaged by the formation of ice on the enclosure.	Indoor or outdoor use; provides a degree of protection against rain, snow, windblown dust, splashing and hose-directed water; undamaged by the external formation of ice on the enclosure
Type 4X	Enclosures are intended for indoor or outdoor use primarily to provide a degree of protection against corrosion, windblown dust and rain, splashing water, and hose-directed water; undamaged by the formation of ice on the enclosure.	Either indoor or outdoor use to provide a degree of protection against falling rain, splashing water, and hose-directed water; undamaged by the for- mation of ice on the enclosure; resists corrosion.	Indoor or outdoor use; provides a degree of protection against rain, snow, windblown dust, splashing and hose-directed water; undamaged by the external formation of ice on the enclosure resists corrosion.
Type 6	Enclosures are intended for use indoors or outdoors where occasional submersion is encountered, limited depth, undamaged by the formation of ice on the enclosure.	Indoor or outdoor use to provide a degree of protection against entry of water during temporary submersion at a limited depth; undamaged by the external formation of ice on the enclosure.	Indoor or outdoor use; provides a degree of protection against the entry of water during temporary submersion at a limited depth. Undamaged by the external formation of ice on the enclosure; resists corrosion.
Type 12	Enclosures are intended for indoor use primarily to provide a degree of protection against dust, falling dirt, and dripping non-corrosive liquids.	Indoor use to provide a degree of protection against dust, dirt, fiber flyings, dripping water, and external condensation of non-corrosive liquids.	Indoor use; provides a degree of protection against circulating dust, lint, fibers, and flyings; dripping and light splashing of non-corrosive liquids; not provided with knockouts.
Type 12K	Enclosures with knockouts are intended for indoor use primarily to provide a degree of protection against dust, falling dirt, and dropping non-corrosive liquids.	Indoor use to provide a degree of protection against dust, dirt, fiber flyings, dripping water, and external condensation of non-corrosive liquids. Knockouts located in the top or bottom walls, or both.	Indoor use; provides a degree of protection against circulating dust, lint, fibers and flyings; dripping and light splashing of non-corrosive liquids; provided with knockouts.
Туре 13	Enclosures are intended for indoor use primarily to provide a degree of protection against dust, spraying of water, oil, and non-corrosive coolant.	Indoor use to provide a degree of protection against lint, dust seepage, external condensation and spraying of water, oil, and non-corrosive liquids.	Indoor use; provides a degree of protection against circulating dust, lint, fibers, and flyings; seepage and spraying of non-corrosive liquids, including oils and coolants.

*NFPA 70 (National Electric Code) defines new Type 3RX as providing the same degree of protection as Type 3R, with the addition of protection against corrosive agents.

Source: NEMA, UL and CSA Standards.

IEC ENCLOSURE INGRESS PROTECTION (IP) RATINGS

Γ		FIRST NL	IMERAL	
	Protecti	on Against Ingress of Solid Objects		Protection of Persons Against
L	IP	Requirements	Example	Access to Hazardous Parts with:
	0	No protection.	Ę	Non-Protected
	1	Full penetration of 50mm diameter sphere not allowed. Contact with hazardous parts not permitted.	50 \$	Back of Hand
	2	Full penetration of 12.5mm diameter sphere not allowed. The jointed test finger shall have adequate clearance from hazardous parts.	(2.3)	Finger
	3	The access probe of 2.5mm diameter shall not penetrate.	⊐₹	Tool
	4	The access probe of 1.0mm diameter shall not penetrate.	=4	Wire
	5	Limited ingress of dust permitted (no harmful deposit).		Wire
	6	Totally protected against ingress of dust.	*	Wire

ADDITIONAL LETTER (OPTIONAL)

Protection Ag	ainst Ingress of Solid Objects		Protection of Persons Against
IP	Requirements	Example	Access to Hazardous Parts with:
A (For use with first numeral O)	Penetration of 50mm diameter sphere up to barrier must not contact hazardous parts.	50	Back of Hand
B (For use with first numerals O and 1)	Test finger penetration to a maximum of 80mm must not contact hazardous parts.	- MG	Finger
C (For use with first numerals 1 and 2)	Wire of 2.5mm diameter x 10mm long must not contact hazardous parts when spherical stop face is partially entered.	D.F.C.	Tool
D (For use with first numerals 2 and 3)	Wire of 1.0mm diameter x 100mm long must not contact hazardous parts when spherical stop face is partially entered.	-SEC d	Wire

	SECOND N	IUMERA	L
Protecti	on Against Harmful Ingress of Wate	r	Protection from Water:
IP	Requirements	Example	
0	No protection.	Ę	Non-Protected
1	Protected against vertically falling drops of water. Limited ingress permitted.	¥	Vertically Dripping
2	Protected against vertically falling drops of water with enclosure tilted 15° from the vertical. Limited ingress permitted.	E.	Dripping up to 15° from the Vertical
3	Protected against sprays to 60° from the vertical. Limited ingress permitted.		Limited Spraying
4	Protected against water splashed from all directions. Limited ingress permitted.		Splashing from all Directions
5	Protected against jets of water. Limited ingress permitted.		Hosing Jets from all Directions
6	Protected against strong jets of water. Limited ingress permitted.	> <u>}</u>	Strong Hosing Jets from all Directions
7	Protected against the effects of immersion between 15cm and 1m.	15emmin]	Temporary Immersion
8	Protected against long periods of immersion under pressure.	7	Continuous Immersion

Source: ©International Electrotechnical Commission

NEMA ENCLOSURE TYPE RATINGS / IEC ENCLOSURE IP RATINGS

IP		NEMA ENCLOSURE TYPE									IP																
FIRST CHARACTER	1		1	2	3	8	3	R	3	S	4	1	4	X	5	j	1	6	6	P	1	2	12	K	1	3	SECOND CHARACTER
IP0_																											IP_0
IP1_																											IP_1
IP2_																											IP_2
IP3_																											IP_3
IP4_															Ī												IP_4
IP5_																											IP_5
IP6_																											IP_6
																											IP_7
																											IP_8
	A	B	A	В	A	B	A	В	A	В	A	В	A	В	A	В	A	В	A	В	A	B	A	В	A	В	

A = A shaded block in the "A" column indicates that the NEMA Enclosure Type exceeds the requirements for the respective IEC 60529 IP First Character Designation. The IP First Character Designation is the protection against access to hazardous parts and solid foreign objects.
 B = A shaded block in the "B" column indicates that the NEMA Enclosure Type exceeds the requirements for the respective IEC 60529 IP Second Character Designation.

The IP Second Character Designation is the protection against the ingress of water.

Examples of Table Use: An IEC IP45 Enclosure Rating is specified. What NEMA Type Enclosures meet and exceed the IP45 rating?

Referencing the first character, 4, in the IP rating and the row designated "IP4_" in the leftmost column in the table; the blocks in Column "A" for NEMA Types 3, 3S, 4, 4X, 5, 6, 6P, 12, 12K and 13 are shaded. These NEMA ratings meet and exceed the IEC protection requirements against access to hazardous parts and solid foreign objects. Referencing the second character, 5, in the IP rating and the row designated "IP4_5" in the rightmost column in the table; the blocks in Column "B" to NEMA Types 3, 3S, 4, 4X, 5, 6, 6P, 12, 12K and 13 are shaded. These NEMA ratings meet and column "B" the second character, 5, in the IP rating and the row designated "IP4_5" in the rightmost column in the table; the blocks in Column "B" to NEMA Types 3, 4X, 4X, 5, 6, 6P are shaded. These NEMA ratings meet and exceed the IEC requirements for protection against the ingress of water. Likewise, the absence of shading Column "B" the rating the "NEMA Enclosure Type 5" indicates that Type 5 does not meet the IP45 equivalence. Only Type 3, 4, 4X, 6 and 6P have both Column "A" in the IP47 equivalence of shading Column "B" the related and could be used in an IP45 application.

The NEMA Enclosure Type 3 not only meets the IP45 Enclosure Rating, but also exceeds the IEC requirements because the NEMA Type requires an outdoor corrosion test; a gasket aging test; a dust test; an external icing test; and no water penetration in the rain test. Slight differences exist between the IEC and NEMA test methods, but the IEC rating permits the penetration of water if "it does not deposit on insulation parts, or reach live parts." The IEC rating does not require a corrosion test; gasket aging test; dust test or external icing test. Because the NEMA ratings include additional test requirements, this table cannot be used to select IP Designations for NEMA rated enclosure specifications.

IEC 60529 specifies that an enclosure shall only be designated with a stated degree of protection indicated by the first characteristic numeral if it also complies with all lower degrees of protection. Furthermore, IEC 60529 states that an enclosure shall only be designated with a degree of protection indicated by the second characteristic numeral if it also complies with all lower degrees of protection up to and including the second characteristic numeral if also comples with all lower degrees of protection up to and including the second characteristic numeral if also complex with all only be designated with a second characteristic numeral if also complex with all one of bard the second characteristic numeral if also complex with all one of bard the second characteristic numeral if also complex with all one of bard the second characteristic numeral if also complex with enclosure to water jets (designated with second characteristic numeral if or 6) and need not comply with requirements for an less it is dual coded. Since the IEC protection requirements for second characteristic numeral if is apparent from the shaded areas shown in the table.

Source: ©National Electrical Manufacturers Association

HAZARDOUS LOCATION CLASSIFICATIONS

CLASS	DIVISION	GROUP
I. Gas	 Hazard May Exist May exist in atmosphere under normal operating conditions. 	A. Acetylene B. Hydrogen and Manufactured Gases Containing Hydrogen C. Petrochemicals (e.g. Ethylene) D. Petrochemicals (e.g. Alcohol)
	 Potential Hazard A. May be present in atmosphere only under abnormal circumstances. B. Location adjacent to Division 1 location. 	A. Acetylene B. Hydrogen and Manufactured Gases Containing Hydrogen C. Petrochemicals (e.g. Ethylene) D. Petrochemicals (e.g. Alcohol)
II. Dust	1. Hazard May Exist May exist in atmosphere under normal operating conditions.	E. Conductive and Combustible Dust (e.g., Aluminum, Magnesium) F. Carbonaceous Dust (e.g., Coal) G. Non-Conductive Combustible Dust
	 Potential Hazard A. May be present in atmosphere only under abnormal circumstances. 	(e.g., plastic, chemical, food, grain)
III. Fibers	1. Production Areas	Easily Ignitable Fibers or Flyings
	2. Handling and Storage Areas	Easily Ignitable Fibers or Flyings

	COLOR-CODIN	IG FOR PUSH BUTTON ACTUATORS AND TH	IEIR MEANINGS
COLOR	MEANING	EXPLANATION	EXAMPLES OF APPLICATION
RED	Emergency	Actuate in the event of a hazardous condition or emergency	Emergency Stop Initiation of emergency function
YELLOW	Abnormal	Actuate in the event of an abnormal condition	Intervention to suppress abnormal condition Intervention to restart an interrupted automatic cycle
GREEN	Normal	Actuate to initiate normal conditions	(See following table)
BLUE	Mandatory	Actuate for a condition requiring mandatory action	Reset function
WHITE			START/ON (preferred) STOP/OFF
GREY	No specific meaning assigned	For general initiation of functions except for emergency stop (see note)	START/ON STOP/OFF
BLACK			START/ON STOP/OFF (preferred)

PUSH BUTTON COLORS

NOTE: Where a supplemental means of coding (e.g. shape, position, texture) is used for the identification of push button actuators, then the same color WHITE, GREY, or BLACK may be used for various functions (e.g. WHITE for START/ON and for STOP/OFF actuators).

	COLORS OF	TYPICAL PUSH BUT	ton operators, e	Y FUNCTION	
ACTUATOR FUNCTION	SHALL BE USED	SHOULD BE USED	PREFERRED COLOR	PERMITTED COLOR	SHALL NOT BE USED
START/ON	_	White, Grey, or Black	White	Green	Red
Emergency Stop and Emergency Switching OFF	Red	_	—	_	—
STOP/OFF		Black, Grey, or White	Black	Red	Green
Push Button Actuators that alternately act as START/ON and STOP/OFF	_	_	White, Grey, or Black	_	Red, Yellow, or Green
Push Button Actuators that cause operation while they are actuated and cease the operation when they are released (ex. Hold-to-Run)		_	White, Grey, or Black		Red, Yellow, or Green
Reset Push Buttons	Blue, White, Grey, or Black	_	_	_	Green
Reset Push Buttons that also act as a STOP/OFF button	_	Blue, White, Grey, or Black	Black		Green

Source: IEC 60204-1, Safety of Machinery, Electrical Equipment of Machines, Part 1 General Rules

COLORS OF TYPICAL PUSH BUTTON OPERATORS, BY FUNCTION									
ACTUATOR FUNCTION	SHALL BE USED	SHOULD BE USED	PREFERRED COLOR	PERMITTED COLOR	SHALL NOT BE USED				
START/ON	_	_	Green	White, Grey, or Black	Red				
Emergency Stop	Red	_	_	_	_				
STOP/OFF		_	Red	White, Grey, or Black	Green				
Push Button Actuators that alternately act as START/ON and STOP/OFF	White, Grey, or Black	_	_	_	Red, Yellow, or Greer				
Push Buttons used to respond to abnormal conditions	Yellow	_	_	_	_				
Push Button Actuators that cause operation while they are actuated and cease the operation when they are released (ex. Jogging)	White, Grey, Blue, or Black	_	Black	_	—				
Reset Push Buttons	Blue, White, Grey, or Black	_	_	-	Green				
Reset Push Buttons hat also act as a STOP/OFF button	Red	-	-	-	-				

INDICATOR LIGHT COLORS

Indicator lights and displays serve to give the following types of information:
Indication - to attract the operator's attention or to indicate that a certain task should be performed. The colors RED, YELLOW, GREEN, and BLUE are normally used in this mode.
Confirmation - to confirm a command, or a condition, or to confirm the termination of a change or transition period. The colors BLUE and WHITE are normally used in the mode and GREEN may be used in some cases.

Unless otherwise agreed to between the supplier and user, indicator (pilot) light lenses shall be color-coded with respect to the condition (status) of the machine in accordance with the following table.

COLORS	FOR INDICATOR LI	GHTS AND THEIR MEANINGS WITH RESPECT TO TH	e condition of the machine
COLOR	MEANING	EXPLANATION	ACTION BY OPERATOR
RED	Emergency	Hazardous condition	Immediate action to deal with hazardous condition (e.g. by operating emergency stop)
YELLOW	Abnormal	Abnormal condition Impending critical condition	Monitoring and/or intervention (e.g. by re-establishing the intended function)
GREEN	Normal	Normal condition	Optional
BLUE	Mandatory	Indication of a condition that requires action by the operator	Mandatory action
WHITE	Neutral	Other conditions; may be used whenever doubt exists about the application of RED, YELLOW, GREEN, BLUE	Monitoring

NOTE: Alternative meanings to those defined in the preceding table may be assigned in accordance with one of the following criteria: the safety of persons and the environment, and the state of the electrical equipment.

Source: ©International Electrotechnical Commission

INDI	UR	

	MACHINE INDICATOR LIGHTS						
COLOR	SAFETY OF PERSONS OR ENVIRONMENT	CONDITION OF PROCESS	STATE OF EQUIPMENT				
RED	Danger	Emergency	Faulty				
YELLOW (AMBER)	Warning/Caution	Abnormal	Abnormal				
GREEN	Safe	Normal	Normal				
BLUE	Mandatory Action	Mandatory Action	Mandatory Action				
CLEAR WHITE GREY BLACK	No specific meaning assigned	No specific meaning assigned	No specific meaning assigned				

Source: NFPA 79 Electrical Standard for Industrial Machinery

CONDUCTOR COLORS

IEC 6020	04-1: COLORS OF CONDUCTORS, BY CONDUC	TOR TYPE
CONDUCTOR TYPE	COLOR SHALL BE USED	RECOMMENDED COLOR
Ground/Earth	GREEN and YELLOW	—
Neutral	LIGHT BLUE	—
AC and DC Power Circuits	_	BLACK
AC Control Circuits	_	RED
DC Control Circuits	_	BLUE
Interlock Control Circuits Supplied from an External Power Source	-	ORANGE

NOTE: Where color-coding is used for the identification of conductors, the following colors may be used: BLACK, BROWN, RED, ORANGE, YELLOW, GREEN, BLUE (including LIGHT BLUE), VIOLET, GREY, WHITE, PINK, and TURQUOISE.

Source: IEC 60204-1, Safety of Machinery, Electrical Equipment of Machines, Part 1 General Rules

NFPA 79: COLORS OF CONDUCTORS, BY CONDUCTOR TYPE						
CONDUCTOR TYPE	COLOR					
Ground (protective bonding)/Earth	GREEN with or without one or more YELLOW stripes					
AC Circuit with a grounded conductor	WHITE, GREY or three continuous WHITE stripes on other than GREEN, BLUE, ORANGE, or YELLOW insulation					
Grounded DC circuit conductor (current carrying)	WHITE with BLUE stripe					
Grounded (current carrying) circuit conductor which remains energized when the main disconnecting means is in the OFF position	WHITE with ORANGE stripe or WHITE with YELLOW stripe					
Ungrounded circuit conductors that remain energized when the supply disconnecting means is in the OFF position	ORANGE or YELLOW					
Ungrounded line, load, and control conductors at line voltage	BLACK					
Ungrounded AC control conductors at less than line voltage	RED					
Ungrounded DC control conductors	BLUE					
Source: NFPA 79 Electrical Standard for Industrial Machinery	·					

	RATING CO	DES FOP	R AC CON	ITROL-CI	RCUIT CO	ONTACTS	AT 50 A	ND 60 P	IERTZ		
CONTACT Rating Code	THERMAL CONTINUOUS TEST CURRENT	120	VOLT		<u>(IMUM CUR</u> Volt	RENT, AMPE 480	RES [®]	600	VOLT		JM VOLT- Peres
DESIGNATION ^a	AMPERES	MAKE	BREAK	MAKE	BREAK	MAKE	BREAK	MAKE	BREAK	MAKE	BREAK
A150	10	60	6.00	-	-	-	-	-	-	7200	720
A300	10	60	6.00	30	3.00	-	-	-	-	7200	720
A600	10	60	6.00	30	3.00	15	1.50	12	1.20	7200	720
B150	5	30	3.00	-	-	-	-	-	-	3600	360
B300	5	30	3.00	15	1.50	-	-	-	-	3600	360
B600	5	30	3.00	15	1.50	7.50	0.75	6	0.60	3600	360
C150	2.5	15	1.5	_	_	_	_	_	_	1800	180
C300	2.5	15	1.5	7.5	0.75	_	-	-	_	1800	180
C600	2.5	15	1.5	7.5	0.75	3.75	0.375	3.00	0.30	1800	180
D150	1.0	3.60	0.60	_	-	_	_	-	_	4.32	72
D300	1.0	3.60	0.60	1.80	0.30	_	_	-	_	4.32	72

LINT DUTY PATING CODE

^a The numerical suffix designates the maximum voltage design values, which are to be 600, 300, and 150 volts for suffixes 600, 300, and 150, respectively. The test voltage is to be 600, 240, or 120 volts.

^b For maximum ratings at voltages between the maximum design value and 120 volts, the maximum make and break ratings are to be obtained by dividing the volt-amperes rating by the application voltage. For voltages below 120 volts, the maximum make current is to be the same as for 120 volts, and the maximum break current is to be obtained by dividing the break volt-amperes by the application voltage, but these currents are not to exceed the thermal continuous test current.

CONTACT RATING CODE	THERMAL CONTINUOUS TEST CURRENT	MAXIMU	MAXIMUM MAKE OR BREAK VOLT-AMPERES		
DESIGNATION ^a	AMPERES	125 VOLT	250 VOLT	301 TO 600 VOLT	AT 300 VOLTS OR LES
N150	10	2.2	-	-	275
N300	10	2.2	1.1	-	275
N600	10	2.2	1.1	0.40	275
P150	5.0	1.1	_	_	138
P300	5.0	1.1	0.55	-	138
P600	5.0	1.1	0.55	0.20	138
Q150	2.5	0.55	_	_	69
Q300	2.5	0.55	0.27	-	69
Q600	2.5	0.55	0.27	0.10	69
R150	1.0	0.22	_	_	28
R300	1.0	0.22	0.11	_	28

^a The numerical suffix designates the maximum voltage design values, which are to be 600, 300, and 150 volts for suffixes 600, 300, and 150, respectively. The test voltage is to be 600, 250, or 125 volts.

^b For maximum ratings at 300 volts or less, the maximum make and break ratings are to be obtained by dividing the volt-ampere rating by the application voltage, but the current values are not to exceed the thermal continuous test current.

Source: Extracts from ©UL508 - Industrial Control Equipment, Seventeenth Edition

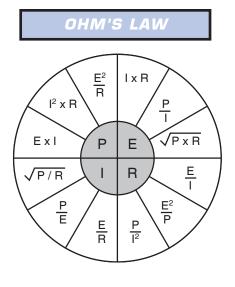
TECHNICAL REFERENCE

NATURE OF CURRENT	CATEGORY	LOW VOLTAGE UTILIZATION CATEGORIES	RELEVANT IEC PRODU STANDARD
a.c.	AC-1	Non-inductive or slightly inductive loads, resistance furnaces.	
	AC-2	Slip-ring motors: starting, switching off.	
	AC-3	Squirrel-cage motors: starting, switching off motors during running.	
	AC-4	Squirrel-cage motors: starting, plugging ¹ , inching ² .	
	AC-5a	Switching of electric discharge lamp control.	
	AC-5b	Switching of incandescent lamps.	60947-4
	AC-6a	Switching of transformers.	00047 4
	AC-6b	Switching of capacitor banks.	
	AC-7a	Slightly inductive loads in household appliances and similar applications.	
	AC-7b	Motor-loads for household applications.	
	AC-8a	Hermetic refrigerant compressor motor control with manual resetting of overload releases.	
	AC-8b	Hermetic refrigerant compressor motor control with automatic resetting of overload releases.	
	AC-12	Control of resistive loads and solid-state loads with isolation by optocoupler.	
	AC-13	Control of solid-state loads with transformer isolation.	60947-5
	AC-14	Control of small electromagnetic loads.	
	AC-15	Control of a.c. electromagnetic loads.	
	AC-20	Connecting and disconnecting under no-load conditions.	
	AC-21	Switching of resistive loads, including moderate overloads.	60947-3
	AC-22	Switching of mixed resistive and inductive loads, including moderate overloads.	
	AC-23	Switching of motor loads or other highly inductive loads.	
a.c. and	А	Protection of circuits, with no rated short-time withstand current.	60947-2
d.c.	В	Protection of circuits, with a rated short-time withstand current.	
d.c.	DC-1	Non-inductive or slightly inductive loads, resistance furnaces.	
	DC-3	Shunt-motors, starting, plugging ¹ , inching ² , dynamic breaking of motors.	60947-4
	DC-5	Series-motors, starting, plugging ¹ , inching ² , dynamic breaking of motors.	
	DC-6	Switching of incandescent lamps.	
	DC-12	Control of resistive loads and solid-state loads with isolation by optocouplers.	
	DC-13	Control of d.c. electromagnets.	60947-5
	DC-14	Control of d.c. electromagnetic loads having economy resistors in circuit.	
	DC-20	Connecting and disconnecting under no-load conditions.	
	DC-21	Switching of resistive loads, including moderate overloads.	60947-3
	DC-22	Switching of mixed resistive and inductive loads, including moderate overloads, (e.g. shunt motors).	
	DC-23	Switching of highly inductive loads, (e.g. series motors).	

Source: ©International Electrotechnical Commission

FULL-LOAD CURRENT, THREE-PHASE ALTERNATING-CURRENT MOTORS

			IHREE-P	HASE AL	ERNAIIN	G-CURRE	NT МОТОР				
	1	NDUCTION-TY	PE SQUIRREL	CAGE AND V	VOUND ROTO	R (AMPERES)	SYNCHRO	NOUS-TYPE U (Amp		R FACTOR*
HORSEPOWER	115 VOLTS	200 VOLTS	208 VOLTS	230 VOLTS	460 VOLTS	575 VOLTS	2300 VOLTS	230 VOLTS	460 VOLTS	575 VOLTS	2300 VOLT
1/2	4.4	2.5	2.4	2.2	1.1	0.9	—	_	—	_	_
3/4	6.4	3.7	3.5	3.2	1.6	1.3	—	_	—	_	_
1	8.4	4.8	4.6	4.2	2.1	1.7	—	_	—	_	_
1-1/2	12.0	6.9	6.6	6.0	3.0	2.4	—	_	—	_	_
2	13.6	7.8	7.5	6.8	3.4	2.7	—	_	—	_	_
3	_	11.0	10.6	9.6	4.8	3.9	—	_	—	_	_
5	_	17.5	16.7	15.2	7.6	6.1	—	_	_	—	_
7-1/2	-	25.3	24.2	22	11	9	—	_	_	_	-
10	_	32.2	30.8	28	14	11		_	_	_	-
15	_	48.3	46.2	42	21	17	—	—	—	_	-
20	_	62.1	59.4	54	27	22	—	—	—	_	-
25	_	78.2	74.8	68	34	27	—	53	26	21	_
30	_	92	88	80	40	32	—	63	32	26	-
40	_	120	114	104	52	41	—	83	41	33	-
50	_	150	143	130	65	52		104	52	42	_
60	_	177	169	154	77	62	16	123	61	49	12
75	_	221	211	192	96	77	20	155	78	62	15
100	_	285	273	248	124	99	26	202	101	81	20
125	_	359	343	312	156	125	31	253	126	101	25
150	_	414	396	360	180	144	37	302	151	121	30
200	_	552	528	480	240	192	49	400	201	161	40
250	_	_			302	242	60	_	_		_
300	_	—	_	—	361	289	72	_	_	—	_
350	_	—	_	—	414	336	83	_	_	—	_
400	_	—	_	—	477	382	95	_	_	—	_
450	_	—	_	—	515	412	103	_	_	—	_
500	_	_	_	_	590	472	118	_	_		_


*NOTE: For 90 and 80 percent power factor, the figures shall be multiplied by 1.1 and 1.25, respectively.

Source: National Electrical Code, Article 430 - Motors, Motor Circuits, and Controllers

FULL-LOAD CURRENTS IN AMPERES

SINGLE-PHA	SE ALTER	NATING-C	URRENT N	NOTORS
HORSEPOWER	115 VOLTS	200 VOLTS	208 VOLTS	230 VOLTS
1/6	4.4	2.5	2.4	2.2
1/4	5.8	3.3	3.2	2.9
1/3	7.2	4.1	4.0	3.6
1/2	9.8	5.6	5.4	4.9
3/4	13.8	7.9	7.6	6.9
1	16	9.2	8.8	8.0
1-1/2	20	11.5	11.0	10
2	24	13.8	13.2	12
3	34	19.6	18.7	17
5	56	32.2	30.8	28
7-1/2	80	46.0	44.0	40
10	100	57.5	55.0	50

Source: National Electrical Code, Article 430 – Motors, Motor Circuits, and Controllers

	AC/DC F	ORMULAS	
TO FIND	DIRECT CURRENT	AC 1-PHASE	AC 3-PHASE
Amps when Horsepower is known	<u>HP x 746</u> E x Eff	<u>HP x 746</u> E x Eff x PF	HP x 746 1.73 x E x Eff x PF
Amps when Kilowatts is known	<u>kW x 1000</u> E	<u>kW x 1000</u> E x PF	<u>kW x 1000</u> 1.73 x E x PF
Amps when kVA is known		<u>kVA x 1000</u> E	<u>kVA x 1000</u> 1.73 x E
Kilowatts	<u> </u>	<u>I x E x PF</u> 1000	<u>I x E x 1.73 x PF</u> 1000
Kilovolt-Amps		<u>I x E</u> 1000	<u> </u>
Horsepower (output)	<u>I x E x Eff</u> 746	<u>I x E x Eff x PF</u> 746	<u>I x E x Eff x 1.73 x PF</u> 746

ABBREVIATIONS:

E = Volts, I = Amps, W = Watts, PF = Power Factor, Eff = Efficiency, HP = Horsepower

AC EFFICIENCY AND POWER FACTOR FORMULAS					
TO FIND	SINGLE PHASE	THREE PHASE			
Efficiency	<u>746 x HP</u> E x I x PF	746 x HP E x I x PF x 1.732			
Power Factor	Input Watts E x I	Input Watts E x I x PF x 1.732			

ABBREVIATIONS:

E = Volts, I = Amps, PF = Power Factor, HP = Horsepower

METRIC CONVERSION FACTORS

FROM	TO	MULTIPLY B
	LENGTH	
Inches (in.)	Millimeters (mm)	25.4
Inches (in.)	Centimeters (cm)	2.54
Feet (ft.)	Meters (m)	0.305
Yards (yd.)	Meters (m)	0.914
	WEIGHT	
Ounces (oz.)	Grams (g)	28.3
Pounds (lb.)	Kilograms (kg)	0.454
Grams (g)	Ounces (oz.)	0.0353
Kilograms (kg)	Pounds (lb.)	2.20
	TORQUE	
Pound inch (lb-in.)	Newton meters (Nm)	0.113
Newton meters (Nm)	Pound inch (lb-in.)	8.85
	TEMPERATURE	
Degrees Fahrenheit (°F)	Degrees Celsius (°C)*	
Degrees Celsius (°C)	Degrees Fahrenheit (°F)†	

†Conversion Formula: 9/5 (°C) + 32° F = °F

ANSI AN	ID IEC ELEC	TRICAL SYMBO	LS, CODES	AND DESCRIPTIONS
ANSI SYMBOL	ANSI CODE	IEC 61346-2 SYMBOL	IEC CODE	DESCRIPTION
$\dashv\vdash$	CON	-~	KM	Contactor Contact Open
*	CON	4	KM	Contactor Contact Closed
$\dashv\vdash$	CR		KA	Relay Contact Open
*	CR		KA	Relay Contact Closed
°∼°	TR	T T	КТ	Timed Contact, NO - On Delay (TDE)
مکن ا	TR	Ť	КТ	Timed Contact, NC - On Delay (TDE)
Ŷ	TR	Ť	КТ	Timed Contact, NC - Off Delay (TDD)
\$	TR	- <u>_</u>	КТ	Timed Contact, NO - Off Delay (TDD)
	SS		SA	Selector Switch
	РВ		SB	Push Button NO
010	РВ	T	SB	Push Button NC
<u>oto</u>	РВ	₽ - <u>+</u> F	SB	Push Button Mushroom Head
20	FL	-5	SL	Liquid Level Switch
20	FLS		SF	Flow Switch
020	PS	- <u>_</u>	SP	Pressure Switch
°~r	TS	-{	ST	Temperature Switch
Š	LS	-1	SQ	Limit Switch
$\overleftarrow{\mathbf{v}}$	PRS		SQ	Proximity Switch
—A—	LT		HL	Indicating Light
$\rightarrow \succ$	PL	-(XS	Plug and Socket
CR	CR	-[]	KA	Control Relay Coil
C1	CON	-0	KM	Contactor Coil
M1)	Μ	-D-	KM	Motor Starter Coil
	TR		КА	Timer Coil
-040-	SOL		YV	Solenoid Coil
μ'n	CTR	-0-	EC	Electromechanical Counter
-0-0000-	СВ		۵F	Circuit Breaker
0	T1	Ø 0	X1	Terminals (reference)
	FU		T FU	Fused Terminals (reference) Fuse, Protective

Source: NFPA 79 Electrical Standard for Industrial Machinery